
Estimation of key in digital

music recordings

MSc Computer Science Project Report

This report is substantially the result of my own work, expressed in my own

words, except where it is explicitly indicated in the text. I give my permission

for it to be submitted to the JISC Plagiarism Detection Service.

The report may be freely copied and distributed provided the source is explicitly

acknowledged.

Ibrahim Sha’ath

Department of Computer Science and Information Systems

Birkbeck College, University of London

Abstract

The goal of this work is to develop software that can analyse a digital

recording of music and estimate the key of the recorded piece, in order

to provide, at a glance, some information on its tonal compatibility with

other recordings.

Section 1 describes the motivation for automated key classification to sup-

port disc jockeys with a computer-enabled workflow. It presents some

basic music theory to clarify the concepts and terms underpinning the

project. The scope is established with a statement of requirements for the

software.

Section 2 describes the project’s theoretical approach, comparing it to

previous work on the problem. It discusses the algorithms employed, and

describes a novel method of translating the output of a Fast Fourier Trans-

form into a musical analysis.

Section 3 describes the implementation from a software engineering per-

spective. It outlines the principles adhered to during development and

describes the design of the user interface and classes. The testing strategy

is presented.

Section 4 describes the experiments conducted to test and optimise the

accuracy of the software. It compares the performance of the software to

existing products.

The conclusions drawn are presented in section 5. The contributions and

limitations of the project are considered, and possible future improvements

are discussed.

Project supervisor Steve Maybank

ii

Acknowledgements

I would like to thank my supervisor Steve Maybank for his guidance,

Roland Heap for his enthusiasm and pride in keying whatever music was

thrown his way, and Chris Harte for his encouragement, as well as his

ability to explain anything in small words. Thanks also to Qualia for

enriching the DJ community with Rapid Evolution.

I would like to acknowledge Mixed In Key for providing a copy of their

software to use in my experiments, and the developers behind the Qt

framework, LibAV, the Fastest Fourier Transform in the West, TagLib

and Secret Rabbit Code, without whose efforts this and doubtless many

other projects would not have been feasible.

iii

Contents

Abstract . ii

Acknowledgements . iii

1 Introduction . 1

1.1 The DJ and mixing music 1

1.2 Music theory . 3

1.2.1 Notes . 4

1.2.2 Octaves . 4

1.2.3 Tuning . 5

1.2.4 Scales . 6

1.2.5 Keys . 7

1.2.6 Consonance . 7

1.2.7 Key compatibility 8

1.3 Requirements . 10

1.3.1 Use Cases . 10

1.3.2 Non-functional requirements 10

1.4 Summary . 12

2 Solution design . 13

2.1 Overview . 13

2.2 Pre-processing of digital audio 14

iv

CONTENTS v

2.2.1 Decoding . 14

2.2.2 Reducing the data rate 15

2.3 Extraction of musical features from digital audio 17

2.3.1 The Fast Fourier Transform 17

2.3.2 The Constant Q Transform 18

2.3.3 A simpler approach to the CQT 20

2.3.4 Framing . 21

2.3.5 The chromagram 23

2.3.6 Tuning . 24

2.4 Segmenting music over time 25

2.5 Key classification . 26

2.5.1 Tone profiles . 26

2.5.2 A final key estimate 28

2.6 Summary . 28

3 Software implementation . 30

3.1 Implementation principles 30

3.1.1 An object-oriented approach 30

3.1.2 Design patterns . 30

3.2 Choice of language and libraries 32

3.3 User interface . 33

3.4 Class overview . 37

3.5 Testing . 39

3.6 Summary . 41

4 Experiments . 42

4.1 Data sets . 42

CONTENTS vi

4.2 Measuring success . 43

4.3 Parameter testing . 44

4.3.1 Frequency analysis range 44

4.3.2 FFT resolution . 45

4.3.3 Spectral kernel bandwidth 46

4.3.4 Tuning algorithms 47

4.3.5 Segmentation . 47

4.3.6 Tone profiles and similarity measure 50

4.4 Comparison to other software 51

4.5 Summary . 53

5 Conclusions and future work 54

5.1 Contributions . 54

5.2 Limitations . 55

5.3 Future work . 56

A Primary data set . 57

B Beatles data set . 60

C Experiment parameter listings 65

List of Figures

1.1 Pattern of octaves on a piano keyboard 4

1.2 12-TET frequencies derived from A440 5

1.3 The circle of fifths . 9

2.1 Low-pass filter response 16

2.2 Constant Q Transform kernels 19

2.3 Comparison between Fast Fourier Transform and Constant

Q Transform . 20

2.4 Parameterisation of direct spectral kernel bandwidth . . . 22

2.5 72-bin chromagram . 23

2.6 12-bin chromagram . 23

2.7 Krumhansl tone profiles 27

2.8 Variant tone profiles . 28

3.1 Activity diagram for key estimation process 31

3.2 Batch processing interface at launch 34

3.3 Batch processing interface in operation 34

3.4 Detailed analysis interface 35

3.5 KeyFinder menu . 36

3.6 Preferences pane . 36

3.7 Core class diagram . 38

3.8 UI class diagram . 40

vii

LIST OF FIGURES viii

4.1 Frequency analysis range 44

4.2 Spectral transform resolution 45

4.3 Comparison between CQT and DSK 46

4.4 Spectral kernel bandwidth 47

4.5 Chromagrams showing change in spectral kernel bandwidth 48

4.6 Harte’s tuning algorithm 49

4.7 Bin-adaptive tuning algorithm 49

4.8 Chromagram segmentation 50

4.9 Tone profiles and similarity measure 51

4.10 Comparison of KeyFinder to existing tools 52

List of Tables

1.1 Use case 1 . 11

1.2 Use case 2 . 11

4.1 MIREX score weightings 43

4.2 Detailed results from software comparison, primary data set 52

4.3 Detailed results from software comparison, Beatles data set 52

A.1 Primary data set and ground truth key classifications . . . 57

B.1 Secondary data set and ground truth key classifications . . 60

C.1 Parameters of frequency analysis range experiment, figure

4.1 . 66

C.2 Parameters of FFT resolution experiment, figure 4.2 66

C.3 Parameters of CQT and DSK comparison, figure 4.3 66

C.4 Parameters of DSK bandwidth experiment, figures 4.4 and

4.5 . 67

C.5 Parameters of Harte tuning algorithm experiment, figure 4.6 67

C.6 Parameters of bin-adaptive tuning algorithm experiment,

figure 4.7 . 67

C.7 Parameters of tone profile and similarity measure experi-

ment, figure 4.9 . 68

C.8 KeyFinder default parameters, used for comparison to other

software, figure 4.10 . 68

ix

1 Introduction

This section explains the motivation for this project, by considering the

role of the DJ (disc jockey) and the impact of computing on the DJ’s work-

flow and practice. It explores the principles of western tonal music theory

relevant to the concept of key classification, and presents a statement of

requirements for the software product.

1.1 The DJ and mixing music

For decades prior to the 1940s, the DJ was exclusively a radio personality,

introducing records and talking to the listening audience; dancehalls and

nightclubs were venues solely for live bands. In the 1940s, taking some

inspiration from the jukebox and some from the “commercial possibilities

of a band-less dance” (Brewster and Broughton 2006, p.54), the idea of

the club DJ was born, and the practice of the DJ began to evolve beyond

the radio presenter style.

In 1965, professional club dancer Terry Noel “first hit on the idea that

two records could be somehow sewn together” (Brewster and Broughton

2006, p.78). Since then, many DJs have employed a variety of techniques

to mix music, using existing records as raw materials to create something

new.

The basic equipment for mixing is a pair of turntables and an audio mixer

(Poschardt 1998, p.31). The mixer must be able to output either or both

of the turntables’ signals to the main sound system, and must also allow

the DJ to hear either source independently of the main output (typically

through headphones). It is usual for the turntables to include some control

1

1. INTRODUCTION 2

over the speed of the motor, allowing the music to be played faster or

slower. With this level of control, the DJ is able to match the tempo

of one record to another, and by manual manipulation of the turntable

platter, to synchronise a record only she can hear to the rhythm of the

record currently playing to the audience (Poschardt 1998, p.108). She

can then use the controls of the mixer to quickly make a transition or

cut from the playing record to the other without a break in the rhythm

of the music. Alternatively, she can perform a longer mix, playing the

synchronised records together to create new sounds.

The range of control over a turntable’s speed is limited. The industry

standard Technics SL-1200 allows a deviation up to ±8% from 33 or 45

rpm, so for example it is not possible to rhythmically mix a record at 90

bpm (beats per minute) with one at 120 bpm, even if they are played at

opposite limits of the speed control. Another effect of the speed change

that must be considered is that a record played too fast or too slow plays

at a noticeably higher or lower pitch. This is not usually a problem for

noisy percussive sounds like drums, but tonal sounds like singing may

become comical or unpleasant.

For these reasons, and due to the time constraints of performing live (for

example, playing a three minute song gives the DJ little time to put away

the previous record, choose the next, and prepare it for mixing), many DJs

classify their records by tempo in advance of a performance (Poschardt

1998, p.172). They might write on a record’s paper sleeve, or otherwise

note the tempo where it can be seen at a glance while selecting the next

record to play.

With the arrival of the affordable laptop computer, some DJs began to

migrate to software equivalents of the turntable and mixer setup1. A

common reason for this initial migration was that a laptop storing dig-

ital recordings is easier to carry around than cases full of vinyl records,

but as DJing software evolved, the technical capabilities available to the

1Many continued to use hardware devices, including turntables, to maintain tactile control
over their computerised performances, but such implementations are not the project’s focus.

1. INTRODUCTION 3

computer-using DJ improved beyond what was possible with traditional

equipment.

The specific innovation that motivates this project is generically called

pitch lock ; DJing software and hardware began to implement algorithms

that allowed a song to be played faster or slower without significantly

affecting the sound of the recording, in that the pitch of the song did not

change even though the speed was changed. This enabled DJs to mix a

much wider range of recordings with regard to their tone, as well as their

rhythm. For example, if two records are tonally compatible (a concept we

will consider in detail in section 1.2.7), the vocal part of one song might be

mixed with the instrumental part of the other. Or two compatible records

might be mixed together to create a new musical harmony.

This new possibility only increased the DJ’s workload, however, and the

time pressure during a performance remained. As a result it was necessary

to classify recordings with regard to their tonal compatibility in advance,

just as was done with tempo. The classification is no longer to be written

on a paper sleeve, but stored in the metadata of each audio file, to be

displayed by the DJing software during a performance.

The aim of this project is to implement software that can automatically

classify a digital recording with respect to its tonal content. This classifica-

tion must be based on the principles of music theory, which are considered

in the next section.

1.2 Music theory

We must begin by considering our scope. This review of music theory is

limited to modern, western, tonal music, since this has the most relevance

to the problem domain. The principles of this theory do not hold for all

historical musical traditions, or for all modern music, especially in other

parts of the world.

1. INTRODUCTION 4

Figure 1.1: Repetitive pattern of octaves on a piano keyboard. Notes increase
in pitch from left to right.

1.2.1 Notes

The building block of music is the note. When a note is sounded, we

primarily perceive a fundamental frequency called its pitch. In fact, most

musical instruments simultaneously sound a series of harmonically related

frequencies called overtones, but these are “very soft in comparison with

the fundamental” and are perceived as contributing to the quality or tim-

bre of the instrument’s sound (Lovelock 1957, pp.122-123).

1.2.2 Octaves

The relative difference between two pitches is called an interval, and the

simplest interval is the octave. The octave is the interval between any

two notes with a frequency ratio of 2:1. The human ear perceives notes

separated by an octave as essentially the same, since “every wave crest

in the lower tone is duplicated in every alternate wave crest of the higher

tone”; in music theory terms this gives us “a tonal spectrum which is alike

at both ends ... so that it can be repeated over and over again at different

altitudes of pitch” (Abbott 1942, pp.32-33). This repetition is evident in

musical terminology: a set of notes an integral number of octaves apart

will share the same name (notes are named with the letters A-G); their

octave relationship is more important than their absolute frequencies. The

repetition is also obvious in the keyboard of a piano, where the repeating

pattern of white and black keys corresponds to the cycle of the octave (as

shown in figure 1.1).

1. INTRODUCTION 5

A
G♯ / A♭
G
F♯ / G♭

F
E
D♯ / E♭
D
C♯ / D♭

C
B
A♯ / B♭
A
G♯ / A♭
G
F♯ / G♭

F
E
D♯ / E♭
D
C♯ / D♭

C
B
A♯ / B♭
A

880
830.61
783.99
739.99
698.46
659.26
622.25
587.33
554.37
523.25
493.88
466.16
440
415.30
392.99
369.99
349.23
329.63
311.13
293.66
277.18
261.63
246.94
233.08
220

Figure 1.2: The right hand column shows the frequencies (Hz) of two octaves
of notes, derived from A440 using 12-TET.

1.2.3 Tuning

Western music is commonly tuned using a system called twelve-tone equal

temperament (12-TET) (Sadie 1980, v.6 p.218). An equal temperament

system is one in which there is a constant frequency ratio between any

two adjacent notes. In 12-TET the octave is divided into twelve notes,

so there is a constant frequency ratio of 12
√

2 between consecutive notes.

The interval between adjacent notes is called the semitone, which is the

smallest common interval (Károlyi 1973, p.38).

The usual starting point for the western tuning standard is 440 Hz, which

is the frequency of a note A near the middle (in musical terms) of the

audible spectrum. The frequencies of all other notes in 12-TET can be

derived simply from A440 (as shown in figure 1.2).

1. INTRODUCTION 6

1.2.4 Scales

A scale is “a series of notes built in progression” from any note (known as

the root or tonic) to the note an octave above it (Károlyi 1973, p.39). The

basic scale in western music is the diatonic scale, which employs seven of

the twelve notes in an octave (if we also count the note an octave above

the root, we have eight notes, which is the origin of the word octave).

Again, the piano keyboard is a simple illustration of the diatonic scale

(Sadie 1980, v.16 p.545). If we play all the white keys in an octave starting

from C we get a major diatonic scale; specifically the scale of C major (C-

D-E-F-G-A-B-C). The major scale is characterised by a specific pattern

of intervals: from C to D is two semitones, from D to E is two semitones,

from E to F is one semitone, and so on. A major scale can start from any

note (a major scale starting from E would be called E major), and the

pattern of intervals will always be 2-2-1-2-2-2-1.

The other diatonic scale to be aware of is the minor scale, which has a

different pattern of intervals: 2-1-2-2-1-2-2. The scale of C minor would

not, then, be played only on the white keys of a piano; the third, sixth

and seventh notes are lowered a semitone from the major scale, and are

played on the black keys E[, A[and B[2 respectively. The lowered notes

are the basis for the term ‘minor’; they are a shorter distance from the

root, compared to their higher counterparts in the major scale (Abbott

1942, pp.40-41).

These scales have decidedly different characters. The major scale sounds

bright, happy or lightweight, whereas the lowered notes of the minor scale

lend it a sound considered more emotive, darker or sadder. We also need

to be aware of the chromatic (meaning colourful or prismatic) scale, so

called because it contains all twelve tones of the octave. As such it is

not useful in terms of classification, but can be considered the root from

2The names of the notes sounded by the black keys on a piano keyboard include a sharp
(]) or flat ([) symbol, indicating that the natural note referred to by the letter is raised or
lowered by a semitone. In an equal temperament system this means that, for example, the
names D] and E[refer to the same note; these are enharmonic equivalents.

1. INTRODUCTION 7

which the diatonic scales are derived. There are also other, so-called modal

scales, but these are not considered here as they are not often employed,

being for the most part obsolete or exotic variants (Abbott 1942, p.39).

1.2.5 Keys

“When a piece of music is written using as its basis the notes of a certain

scale, it is said to be in the key of that scale” (Lovelock 1957, p.41). Since

each note in the octave can be used as the starting point for a major

and a minor scale, this gives us twenty-four keys which are used in the

composition and performance of most modern western music. Abbott

(1942, p.45) refers to these as “twenty-four tonal compartments in which

to place music”, and this project is based on that principle; the aim is to

classify musical recordings as being in one of the twenty-four keys.

There is a quandary here: to say that a piece of music is in a single global

key is often an oversimplification. Most music moves from one key to

another (a process called modulation); usually the initial key is reestab-

lished, but there is also a tendency in some popular music to have a single

dramatic key change towards the end of a song to build momentum. There

is a converse phenomenon specific to this problem domain: the electronic

dance music played by many DJs does not usually feature noticeable key

changes; energy and movement is more often derived from the evolving

sound of repetitive phrases, and from rhythm, than from modulation.

The primary goal here is to provide a classification that can be noted at a

glance, so a single key estimate for a recording must be the project’s aim.

However, it would be best to provide a supplementary way for the DJ to

visualise key changes over the course of a recording. This idea is returned

to in section 1.3 when we consider the software requirements in detail.

1.2.6 Consonance

“Acoustically, the sympathetic vibration of sound waves of different fre-

quencies related as the ratios of small whole numbers; psychologically,

1. INTRODUCTION 8

a harmonious sounding together of two or more notes, that is with an

‘absence of roughness’” (Sadie 1980, v.4 p.668).

We have already seen that two notes an octave apart are perceived as

essentially the same; this is called a perfect consonance. The perception of

consonance is associated with a simplicity of frequency ratio: the octave

is a ratio of 2:1, and other simple ratios approximated in 12-TET give

us the other perfect consonances; the perfect fifth (an interval of seven

semitones, with a frequency ratio of ∼3:2) and the perfect fourth (the

inverse of the fifth: an interval of five semitones, with a frequency ratio of

∼3:4). The fourth and fifth are so called because of their positions in the

diatonic scales; note that they appear at the same intervals in both the

major and minor scales (hence ‘perfect’).

1.2.7 Key compatibility

The consonances between notes lead to strong relationships between groups

of keys; some transitions between keys will sound much more concordant

than others.

Two songs in the same key will tend to use all the same notes and have the

same tonic or root note, so they will almost certainly sound harmonically

compatible. Shifting from one key to another with roots separated by

a fifth or fourth will likewise be harmonious; they share all but one of

the notes in their respective scales, and their tonic notes are related by a

perfect consonance. Songs in parallel keys, that is to say major and minor

keys with the same root (e.g. C major and C minor) share a tonic and all

but three notes; they will often be compatible.

There is also the concept of a relative key; for every major key there is

a minor key whose scale is composed of the same notes (C major and A

minor, for example, are both composed of all the white notes on a piano).

The transition from a key to its relative major or minor is also likely to

sound highly compatible.

These relationships are illustrated by what is known as the circle of fifths

1. INTRODUCTION 9

G♯m

C♯m

F♯m

Bm

Em
Am

Dm

Gm

Cm

Fm

E♭m
B♭m

E♭

B♭

A♭

D♭
G♭

A

E

B

D

C
F G

Figure 1.3: The circle of fifths. Major keys are on the outside of the circle,
minor keys are on the inside and suffixed ‘m’. Each clockwise step is a fifth
interval, each anti-clockwise step a fourth. Relative major and minor keys are
adjacent. For example, from a passage of music in C, the most harmonious
transitions will be to G (a fifth above), F (a fifth below), or Am (the relative
minor).

(figure 1.3). It arranges all twenty-four keys with respect to their concor-

dant relationships, with relative keys forming inner and outer rings, and

each clockwise step representing a perfect fifth interval.

This demonstrates why key classification is so useful to the DJ. As a rule

of thumb, a transition from any starting key to an adjacent one on the

circle of fifths will sound concordant, so with pre-classified recordings the

DJ can determine whether songs are tonally compatible very quickly3.

This is a sufficient theoretical backdrop to consider the requirements for

the software product.

3The circle was further simplified in the 1990s by a DJ named Mark Davis. He employed
the metaphor of a clockface and replaced each key’s name with a simple alphanumeric code
(8A for Am, 8B for C, 9A for Em, etc.), enabling DJs to make quick decisions without needing
to remember the circle of fifths (Camelot Sound). This representation of key relationships is
commonly seen in DJ culture.

1. INTRODUCTION 10

1.3 Requirements

1.3.1 Use Cases

The use cases for the software are straightforward. Firstly, the user must

be able to automatically estimate key classifications for a batch of audio

recordings, and write these estimates to the audio file metadata for later

use (table 1.1). Secondly, she should be able to inspect the key classifica-

tion of a single recording in detail to consider the effects of key changes

over time (table 1.2).

1.3.2 Non-functional requirements

The non-functional requirements for the software are as follows:

• The software must be able to decode a wide variety of audio formats.

• The software must be able to scale robustly to the analysis of very

large batches, up to thousands of files.

• The software must be extensible to allow the implementation of new

algorithms.

• The software should be Mac OS X compatible but portable to Mi-

crosoft Windows.

• The software should be as fast as possible without sacrificing accu-

racy.

• The release of the software must not infringe on the licenses of any

integrated libraries.

1. INTRODUCTION 11

Table 1.1: Use case 1
Use Case Name: Batch key estimation ID: 1 Importance: High

Primary Actor: User Use Case Type: Detail Essential

Description: This use case describes the process of estimating the keys of a
batch of digital audio recordings.

Normal Flow:
1. The user selects a set (e.g. a directory) of audio files to analyse.
2. The software computes overall key estimations for each file in turn, and
displays them.
3. The user confirms that the key estimations should be written to the audio
file metadata.
4. The software writes the key estimations to the audio file metadata.

Exceptional Flow:
2a. If any of the files cannot be located or decoded, the software informs the
user without interrupting the batch process.

Table 1.2: Use case 2
Use Case Name: Detailed key analysis ID: 2 Importance: High

Primary Actor: User Use Case Type: Detail Essential

Description: This use case describes the process of inspecting the detailed
key information of a single digital audio recording.

Normal Flow:
1. The user selects a single audio file to analyse.
2. The software computes a key estimation for the audio file, providing
visualisations of the estimation process to illustrate its operation. The vi-
sualisations should include a list of the keys detected over the course of the
recording.

Exceptional Flow:
2a. If the file cannot be located or decoded, or some other exception is
encountered, the software informs the user.

1. INTRODUCTION 12

1.4 Summary

This section has outlined the role of the DJ and the motivation for au-

tomated key classification. The principles of music theory underlying the

project were illustrated, and the requirements for the software were de-

scribed. The next section discusses the project’s theoretical approach, and

the algorithms employed in the key estimation process.

2 Solution design

This section discusses the algorithms employed in the extraction of musical

features from digital audio recordings, and presents a novel process for a

musical spectral analysis. It describes various algorithms which can be

applied to the musical features to account for detuning or key changes,

and shows the final key classification process.

2.1 Overview

This project’s software implementation, referred to henceforth as KeyFinder,

implements a linear process for estimating the key of a piece of music.

First, the file containing the audio is opened and decoded, and the audio

stream is extracted. The number of channels in the stream is reduced,

mapping it to a single monoaural signal. A low-pass filter is then applied

to the signal, in order to enable a reduction in the sample rate.

The stream is divided into overlapping analysis frames in the time domain,

each of which is translated into the frequency domain by a Fast Fourier

Transform. The output of each FFT is post-processed to obtain Constant

Q components, which describe the energy at the frequencies of musical

notes. The constant Q components are then mapped to a single-octave

chromagram, describing the distribution of energy across the chromatic

scale for each temporal frame of the audio.

A harmonic change detection function may be applied, which describes

the rate of change in the music’s tonal content; peaks in this signal are

assumed to be key changes and used to segment the chromagram. Each

of these segments is further reduced, the time dimension being discarded

13

2. SOLUTION DESIGN 14

to provide a single chromatic vector. This vector is correlated against a

set of tone profiles, which represent the most likely distribution of energy

for each of the twenty-four keys. Each segment is labelled with the key

corresponding to the tone profile which yields the highest correlation with

the chromatic vector.

The value of each segment to the overall classification is dictated by its

length and its overall level of energy, so that the keys of longer and louder

passages of music are weighted over shorter, quieter passages. The key

with the highest final weighting is picked as the overall key for the record-

ing.

2.2 Pre-processing of digital audio

2.2.1 Decoding

Digital audio signals are stored in a variety of file formats (known as

containers), and encoded with a variety of algorithms (known as codecs).

We will consider three examples.

The Waveform Audio format (commonly referred to as WAV, due to its

filename extension), usually stores uncompressed audio in a linear pulse-

code modulation (LPCM) format. For example, the LPCM data extracted

from an audio CD is an interleaved stereo pair of signals, each sampled

at 44100 Hz with 16-bit precision. Uncompressed WAV files tend to be

large, roughly 10MB per minute.

Arguably the most popular format for digital audio, at least in the con-

sumer market, is MPEG Audio Layer 3, commonly referred to as MP3. It

reduces storage requirements by a process of lossy compression, removing

elements of the audio signal at or beyond the limits of human auditory

perception. This can be done by a variety of processes, to produce files of

varying sizes (as a rule of thumb, a high quality MP3 is about one sixth

2. SOLUTION DESIGN 15

the size of the equivalent uncompressed WAV file). Too high a compres-

sion ratio can introduce audible artifacts, adversely1 affecting the quality

of the recording.

A middle ground is established by lossless compression formats like the

Free Lossless Audio Codec (FLAC). These offer exact reproduction of CD-

quality audio, with the storage burden reduced by roughly half, though at

an increased computational cost for decoding.

To ensure compatibility with the widest possible range of containers and

codecs, KeyFinder employs the LibAV family of open-source libraries

(LibAV community 2011). These are the foundation of the FFmpeg

transcoding tool and the popular VLC media player, and provide sup-

port for a wide variety of media formats, including WAV, MP3, FLAC

and many others.

2.2.2 Reducing the data rate

Once decompressed and decoded, the audio files are generally in the LPCM

format of an audio CD: an interleaved stereo pair of 44100 Hz, 16-bit

sample streams. This gives ∼172 kB to analyse per second of audio, but

this data rate can be reduced significantly without losing pertinent data.

First of all, stereophonic sampling is not useful; a signal’s position in the

stereo image does not affect the tonal content of the music (Noland 2009,

p.37). Therefore, a simple average is taken of the two channels to reduce

the audio to a single monophonic signal.

Secondly, the 44100 Hz sample rate allows for the accurate capture of

frequencies up to the Nyquist frequency of 22050 Hz. This is around the

limit of human perception (Olson 1972, p.315), but is an extremely high

frequency from a musical point of view, so a low-pass filter can be applied,

after which the audio can be downsampled to yield a much lower sample

1It has been suggested that the ubiquity of MP3 has led to a steady change in the way
music is perceived by younger listeners, and that there is actually a growing preference for
these artifacts (Berger 2009). For the purposes of this project accurate reproduction of the
recorded material is favoured.

2. SOLUTION DESIGN 16

Figure 2.1: Magnitude response of default low-pass filter, plotted using Fisher’s
online toolkit. Vertical axis denotes magnitude, horizontal axis denotes fre-
quency (Hz). The two dashed bars mark the key frequencies for the roll-off.

rate.

For an analysis of six octaves starting at A0, a very deep sub-bass note

at 27.5 Hz, up to A[6, around the top of the range of soprano singers at

∼1661 Hz, KeyFinder implements a low-pass filter designed with an online

toolkit (Fisher 1999). It is a 161-tap root raised cosine filter with a roll-off

from around 1760 Hz (A6, a semitone above the top of our range) to 2205

Hz, allowing a downsampling factor of 10 without aliasing (see figure 2.1).

The default downsampling process, incorporating Fisher’s filter, is effective

and quite fast, but it is based on hard-coded coefficients and is thus limited

to these particular parameters. To guard against any non-standard sample

rates or changes in the frequency analysis requirements, KeyFinder also

integrates a library (de Castro Lopo 2009) which can work with a range

of sample rates, albeit with significantly reduced performance.

The reduction to mono and downsampling leave a much more manageable

data rate of ∼8.6 kB per second of audio, from which the extraction of

musical features can begin.

2. SOLUTION DESIGN 17

2.3 Extraction of musical features from digital audio

2.3.1 The Fast Fourier Transform

The most common tool for spectral analysis of digital audio is the Fast

Fourier Transform (FFT), an efficient software implementation of the Dis-

crete Fourier Transform (DFT) (Noland 2009, pp.39-40). The DFT, when

applied to a sampled audio signal, yields a representation of the energy

present at certain frequencies. It is given by

Xk =
N−1∑
n=0

xne
−i2πnk/N for k = 0, 1, ... , N − 1 (2.1)

where xn is the sampled time-domain input, and Xk is the frequency do-

main output. The number of input samples, N , determines “the resolution

of the frequency-domain results, and the amount of processing time nec-

essary” (Lyons 2010, p.61).

The exact frequencies of the output components depend on both N and

the rate at which the original signal was sampled (s). For example, with a

signal sampled at 44100 Hz and a 1024-point Fourier transform, the fun-

damental analysis frequency will be s/N = 44100/1024 ≈ 43.07 Hz. The

other frequency components are “integral multiples of the fundamental

frequency” (Lyons 2010, p.62) such that

fk = ks/N (2.2)

where k is the index of the frequency-domain component. So, the X1 term

in the output specifies the magnitude of any 43.07 Hz component in the

input, the X2 term specifies the magnitude of any 86.13 Hz component,

and so on (Lyons 2010, p.62).

This is why the FFT, while computationally efficient, does not closely

suit the problem of musical analysis. As discussed in section 1.2.3, the

frequencies of musical notes in 12-TET are exponentially spaced by a con-

stant ratio of 12
√

2, whereas the frequency samples of an FFT are linearly

spaced. Therefore, the FFT “yields components which do not map ef-

ficiently to musical frequencies” (Brown 1991, p.425); it has insufficient

2. SOLUTION DESIGN 18

resolution for low musical notes and excessive resolution for high notes.

The very mature and efficient FFTW library (Frigo and Johnson 2009) is

still the foundation of KeyFinder’s spectral analyser2, but the output of

the FFT requires some post-processing.

2.3.2 The Constant Q Transform

Brown (1991, pp.426-427) devised a transform algorithm whose compo-

nents are exponentially spaced and centred on musical frequencies. The

eponymous Q is the relationship between a filter’s bandwidth and its cen-

tre frequency; a filterbank where Q is constant can partition the frequency

spectrum “into semitone-size regions” (İzmirli 2005, p.2). The CQT of a

sampled time-domain sequence xn is given by

Xk =
1

Nk

Nk−1∑
n=0

wk,nxne
−i2πnQ/Nk (2.3)

where Nk is the number of time-domain samples for the kth spectral com-

ponent and wk,n is a suitable window function3.

Brown (1991, p.427) describes how the transform returns Fourier compo-

nents Xk for frequencies Q/Nk; since Q is a constant, the choice of Nk is

inversely proportional to the frequency of interest for component k.

Brown and Puckette (1992, pp.2698-2699) went on to publish a method

of post-processing the output of an FFT to arrive at a CQT, taking “full

advantage of the computational efficiency of the fast Fourier transform”

(Brown and Puckette 1992, p.2698). This process pre-calculates a kernel

2KeyFinder also includes the Goertzel algorithm (Lyons 2010, pp.738-741), a transform
that calculates a single DFT coefficient. It shows some promise for a musical feature extraction
due to the ability to choose the analysis frequency, but is ultimately less effective than the
FFT-based solution; and without a mature library implementation, is rather less efficient.

3A window is applied to the input of a discrete transform function to reduce the effects of
spectral leakage, which occurs when there are input sinusoids that do not have “an integral
number of cycles over N input samples” (Lyons 2010, p.85); that is, they do not oscillate
exactly at one of the analysis frequencies. In dealing with real world signals, and certainly
with music, this is almost always the case. A window function minimises these end-point
discontinuities by smoothing the amplitude at the beginning and end of the sampled interval
towards a common value (Lyons 2010, pp.89-90).

2. SOLUTION DESIGN 19

time frequency

CQ
T

co
mp

on
en

ts
(am

pli
tud

e)

CQ
T

co
mp

on
en

ts
(m

ag
nit

ud
e)

Figure 2.2: Constant Q Transform kernels. Each line represents an analysis
component (this depiction is for an analysis of three octaves, from A3 at the
bottom to A[5 at the top). On the left, the real part of the temporal kernel;
note the shorter windows and greater amplitude as the frequency increases.
The Fourier transform of the temporal kernel is the spectral kernel, whose
magnitude is plotted on the right. Note the geometric spacing between the
centre frequencies of the components, and the greater bandwidth at higher
frequencies.

that can be matrix multiplied with the frequency-domain output of the

FFT, and re-used for each transform operation.

Initially they build a time-domain or temporal kernel of windowed sinu-

soids at the required analysis frequencies (left hand side of figure 2.2).

They then take the FFT of this temporal kernel to yield a frequency-

domain or spectral kernel. They determined empirically that the spectral

kernel can be made sparse without losing too much information; this is

done by discarding any magnitudes below a certain threshold, leaving only

one non-zero region per frequency-domain component (right hand side of

figure 2.2). Matrix multiplying the output of an FFT by the spectral

kernel provides an efficient approximation to the constant Q transform in

equation 2.3; the effect of the multiplication is illustrated in figure 2.3.

The CQT included in KeyFinder, based on MatLab implementations by

Blankertz (2001) and Harte (2010, p.67), has been quite successful, but

the software primarily uses a more efficient variation on the algorithm.

2. SOLUTION DESIGN 20

fre
qu

en
cy

 (F
FT

 bi
ns

)

time

fre
qu

en
cy

 (C
QT

 bi
ns

)

time

Figure 2.3: Comparison between FFT and CQT. Each image depicts a chro-
matic scale played on a square wave synthesizer. Lighter greys denote higher
energy. On the left is a multi-frame FFT, on the right is the same result after
post-processing with a CQT. In each image the harmonic overtones of the notes
are obvious. Note the linear rise of the scale in the CQT, in contrast to the
exponential pattern of the FFT.

2.3.3 A simpler approach to the CQT

This section presents a novel method of translating an FFT’s output

into constant-Q spectral components. This method is more efficient than

Brown and Puckette’s CQT. The principle is the same, but the spectral

kernel is built directly, rather than by taking the FFT of a temporal ker-

nel. This speeds up the generation of the kernel (which, admittedly, is

not a concern in the long run, since it is reused for each transform) and

reduces the number of arithmetic operations in each transform.

To approximate the CQT’s spectral kernel, a cosine window in the fre-

quency domain is used for each component, centred on the frequency of

interest and with the bandwidth scaled by a constant Q. The left and right

bounds of this window are defined as points along the continuum of FFT

bins4, and are given by

lk = (1− Q

2
)(
fkN

s
) (2.4)

rk = (1 +
Q

2
)(
fkN

s
) (2.5)

4As such, equations 2.4 and 2.5 are derived from equation 2.2.

2. SOLUTION DESIGN 21

where fk is the frequency of interest for component k, N is the resolution

of the FFT, and s is the sample rate. Q is given by

Q = p(
12
√

2− 1) (2.6)

where p is a user-defined parameter. FFT bins whose indices fall within

the bounds lk and rk are assigned a coefficient, as given by

cb,k =
wb,kfk
brkc∑
i=dlke

wi,k

for lk ≤ b ≤ rk (2.7)

where b is the index of the FFT bin and wx,k is the spectral window

function

wx,k = 1− cos(2π
x− lk
rk − lk

) (2.8)

The normalisation by fk and the summation of wi,k in equation 2.7 were

arrived at empirically. Once normalised in this way, the coefficients pro-

duce a spectral kernel very similar to Brown and Puckette’s, which can

likewise be matrix multiplied with the output of an FFT to yield constant

Q frequency components.

The parameter p in equation 2.6 allows for broader or narrower windows

with more or less frequency overlap (see figure 2.4). This has been found

to significantly increase KeyFinder’s accuracy. Each window can be lim-

ited to spectral information from only one semitone, and the effects of

noisy, wideband signals is significantly reduced. The results of this pa-

rameterisation are illustrated further in section 4 below.

2.3.4 Framing

Whichever version of the CQT is used, the output is a frequency-domain

chromatic vector, measuring the energy found for each of the requested

musical notes. Since the output of the FFT (and thus the CQT) has no

time resolution, multiple transforms must be performed across the dura-

tion of the recording. As shown in section 2.3.1, the FFT transforms N

samples at a time, so the audio stream is divided into frames of N sam-

ples, and a Blackman window function is applied to each frame to reduce

2. SOLUTION DESIGN 22

Figure 2.4: Parameterisation of direct spectral kernel bandwidth. The vertical
axis denotes the magnitude of the window function, the horizontal axis denotes
frequency, delineated by the analysis frequencies of FFT bins. The first graph
shows neighbouring spectral windows with p = 3.8, which is where the direct
spectral kernel most closely models Brown and Puckette’s CQT. Note the con-
siderable overlap between the frequencies analysed by adjacent windows. The
second graph shows the same windows for p = 0.8, which is where KeyFinder’s
overall accuracy is highest. There is no overlap in analysis frequency bands,
and indeed some frequencies that are not of musical interest are discarded.

2. SOLUTION DESIGN 23

Figure 2.5: 72-bin chromagram of Brighter Day by Cyantific and Natalie
Williams. The vertical axis denotes the musical note frequencies of the 72
bins. The horizontal axis denotes time. Lighter greys denote higher energy.
This illustrates a 6-octave analysis of about 5 minutes of music.

Figure 2.6: A 12-bin chromagram obtained by summing the data in figure 2.5
at octave boundaries.

spectral leakage before running the FFT. To improve the time resolution

of the output, and to avoid missing any musical events near the edge of

the window function, the frames are overlapped as described by Noland

(2009, p.38), starting each new analysis after N/4 samples. This sequence

of frames defines the time axis in figures 2.5 and 2.6.

2.3.5 The chromagram

Having completed analysis frames over the duration of a recording, the

result is a chromagram showing the energy found for each musical note

over time, as illustrated in figure 2.5. This is a useful visualisation of the

musical features of a recording, and is included in KeyFinder’s user inter-

face. However, the data can be simplified for further analysis by taking

advantage of the cyclical properties of the musical spectrum discussed in

section 1.2.2. The absolute octave to which each musical note belongs is

discarded, preserving only their relative positions within a single octave,

thus reducing 72 bins to a 12-bin vector for each analysis frame, as shown

2. SOLUTION DESIGN 24

in figure 2.6. From this point on, all analysis is based on this single octave

chromagram.

2.3.6 Tuning

KeyFinder includes the option to start the spectral analysis with more

than one frequency component per semitone, allowing for the capture of

musical features slightly detuned from the A440 standard introduced in

section 1.2.3. For example, if 3 bins per semitone are analysed, the central

bin captures events at A440 and the bins on either side capture events

detuned by ±33 cents (a cent is 1/100 of a semitone).

The result of this extra data capture is that at this stage in the process the

chromagram has more than twelve bins per octave, and must be simplified

before further analysis. KeyFinder implements two different algorithms for

this simplification.

The first, described by Harte (2010, pp.71-73), is aimed at recordings

where the piece of music is internally consistent but uses a tuning standard

that differs from A440. This can be seen in some songs in The Beatles’

back catalogue (for more detail on the music used in experiments, see

section 4 below); for example, Lovely Rita is about a quarter of a semitone

flat. The algorithm uses quadratic interpolation to determine the distance

from A440 at which the majority of musical events occur; this essentially

yields an offset from A440 by which the chromagram is adjusted.

The second algorithm, developed specifically for the analysis of electronic

dance music, is aimed at recordings where some parts of the music are

detuned from others. This happens occasionally in music made using

samples of other recordings, like People Everyday by Arrested Develop-

ment. For each semitone, the algorithm determines which of its bins has

the highest energy, and uses this as the basis for the simplified single semi-

tone bin. Rather than discarding the other bins, it adds some proportion

of their value (one fifth, by default) to the simplified bin. This process is

applied to each semitone, and the result is a 12-bin chromagram.

2. SOLUTION DESIGN 25

We do not discuss these algorithms in detail here because, as noted in

section 4 below, they do not improve KeyFinder’s results.

2.4 Segmenting music over time

KeyFinder achieves some good results by discarding the time dimension

entirely at this point and making a key classification based on the features

of the recording as a whole. However, as discussed in section 1.2.5, it is

often an oversimplification to classify a piece of music as being in a single

key; a piece may modulate between keys and the software should attempt

to capture this.

KeyFinder therefore includes the option to segment a recording, primar-

ily using key changes. These algorithms have enriched the user interface

somewhat, as they allow the inspection of the different keys which influ-

ence a recording. Unfortunately, as with the processes described above

that take account of detuning, these algorithms have not significantly im-

proved KeyFinder’s overall results, so they are not discussed in detail.

Firstly, KeyFinder includes a harmonic change detection function devised

by Harte (2010, pp.77-82) for use in the detection of chord changes, using

a chromagram as input. The basis for inclusion here is that, with different

parameters, this function can detect the larger harmonic movements that

occur at key changes.

Secondly, there is an arbitrary segmentation algorithm, which simply di-

vides the chromagram into n segments of equal length along the time axis.

While the divisions are obviously not based on music theory, they allow

the global key of a recording to assert itself by limiting the effect of short

passages that might otherwise have affected the overall key classification.

As such this algorithm has demonstrated some success.

2. SOLUTION DESIGN 26

2.5 Key classification

With the chromagram divided as necessary, the time dimension is dis-

carded, reducing each segment (or the whole recording, if no segmenta-

tion was applied) to a single 12-element chromatic vector. This represents

the distribution of notes across the octave for the entire segment. There

are a range of existing approaches to key classification which might be ap-

plied here, including geometric models based on the harmonic relationships

within a scale (Chew 2002), machine learning techniques (Peeters 2006),

and tone profiles based on psychoacoustic perception studies (Krumhansl

1990). The final approach, classification against tone profiles, has received

a lot of attention as well as some noted revision (Temperley 1999; Gómez

Gutiérrez 2006), and it has been successfully applied in many previous

experiments (Gómez and Herrera 2004; Pauws 2004; İzmirli 2005; Peeters

2006). For these reasons it is implemented as the basis of KeyFinder’s

classification algorithm.

2.5.1 Tone profiles

A series of psychoacoustic experiments by Krumhansl (1990, p.21) in-

volved playing incomplete scales (C major and C minor) to musically

trained listeners, followed by a final tone taken at random from the chro-

matic scale. The listeners were asked to rate how well the final tone “fit

with the context in a musical sense” (Krumhansl 1990, p.27). The results

show that the listeners rated the tones within the scale higher than those

without, and that the tonic, fifth and third were rated particularly highly

(see figure 2.7).

Krumhansl (1990, p.77-81) goes on to describe a key-finding algorithm

based on these results. Twenty-four tone profiles are generated, one for

each key, by transposing these major and minor profiles to each of the

twelve positions of the chromatic scale. Each profile is then correlated in

turn against a representation of a passage of music similar to an analysis

vector from the chromagram (Krumhansl actually derives her musical data

2. SOLUTION DESIGN 27

P1 m2 M2 m3 M3 P4 TT P5 m6 M6 m7 M7
0

1

2

3

4

5

6

7
Major

P1 m2 M2 m3 M3 P4 TT P5 m6 M6 m7 M7
0

1

2

3

4

5

6

7
Minor

Figure 2.7: Krumhansl’s (1990, p.30) tone profiles. Note the variation between
major and minor, particularly that the weight given to the notes included in
each scale (as discussed in section 1.2.4) is much higher than to those excluded.

from a symbolic representation – sheet music – rather than a recorded

performance, but the principle is the same). The correlation score cxy

between an input vector x and a tone profile y is given by

cxy =

11∑
n=0

(xn − x̄)(yn − ȳ)√
11∑
n=0

(xn − x̄)2
11∑
n=0

(yn − ȳ)2

(2.9)

where x̄ is the mean of the input vector values and ȳ is the mean of the

tone profile values. The profile with the highest correlation score yields

the estimated key.

KeyFinder’s implementation of tone profile classification includes the cor-

relation score method, as well as an alternative, slightly more efficient

cosine similarity method given by

sxy =
x · y

‖ x ‖‖ y ‖
(2.10)

This yields the cosine of the angle between the two vectors x and y; close

vectors will score near 1 while orthogonal vectors will score 0.

The choice of tone profiles has a dramatic effect on the results of the key

estimation algorithm. KeyFinder includes Krumhansl’s profiles, as well

as variations by Temperley (1999, p.74), Gómez Gutiérrez (2006, p.107),

and a new set devised during the project.

2. SOLUTION DESIGN 28

P1 m2 M2 m3 M3 P4 TT P5 m6 M6 m7 M7
0

1

2

3

4

5

6

7
Major

Krumhansl Sha'ath
P1 m2 M2 m3 M3 P4 TT P5 m6 M6 m7 M7

0

1

2

3

4

5

6

7
Minor

Krumhansl Sha'ath

Figure 2.8: Variations applied to Krumhansl’s tone profiles to increase accuracy.
The most significant changes are to the tonic (P1), and to the final diatonic
element in each vector (M7 and m7 respectively).

The new profiles (figure 2.8) were arrived at empirically. They are a slight

adjustment of Krumhansl’s profiles and have yielded greater accuracy (see

section 4 below).

Given the importance of the tone profile to the musical analysis, the

KeyFinder interface also includes the option for the user to specify custom

profiles for key classification.

2.5.2 A final key estimate

If no segmentation has been applied, the classification against tone profiles

provides a key estimate for the whole recording. In a segmented recording,

a score is assigned to each of the keys estimated, based on the duration of

their segment(s) divided by the energy captured in the chromagram over

the duration of the segment(s). This weights the keys of longer and louder

passages of music over shorter, quieter passages. The key with the highest

score is picked as the final key estimate for the recording.

2.6 Summary

This section has outlined the theoretical background for the KeyFinder

implementation and the algorithms it employs. The next section describes

2. SOLUTION DESIGN 29

the software engineering processes applied during the project. Thereafter,

section 4 presents experimental results demonstrating the effects of these

algorithms, and justifying the choices of the default values for their key

parameters.

3 Software implementation

This section describes the software engineering process and principles for

the KeyFinder implementation. The choice of libraries is discussed, and

the design of interfaces and classes is outlined. The testing strategy is

described.

3.1 Implementation principles

3.1.1 An object-oriented approach

KeyFinder is implemented using object-oriented programming (OOP) tech-

niques, for a number of reasons. The procedure for estimating a record-

ing’s key can be easily decomposed into shorter, specialised actions, each

of which is concerned with a different family of algorithms or operations,

and often with a different set of data. This is reflected in the structure of

section 2 of this report and reviewed in figure 3.1. Such a structure lends

itself to encapsulation of the data storage into objects and the abstraction

of interchangeable families of algorithms into class hierarchies.

3.1.2 Design patterns

Since most operations are implemented in a number of ways, the Strategy

design pattern is used extensively. This encapsulates a family of algo-

rithms and makes them interchangeable, so the appropriate algorithm can

be chosen at runtime (Freeman et al. 2004, p.24). For example, as noted

in section 2.3.1, the results of the Fast Fourier Transform need to be post-

processed to be useful in a musical analysis, but KeyFinder has two ways

30

3. SOFTWARE IMPLEMENTATION 31

Decode audio file

Reduce data rate

Spectral analysis

Tuning

Segmentation

Classification

Audio stream

Audio stream

Chromagram

Chromagram

Segments

Figure 3.1: Activity diagram for key estimation process

3. SOFTWARE IMPLEMENTATION 32

of accomplishing this; with Brown and Puckette’s Constant Q Transform,

or with the more efficient directly-computed spectral kernel. These two

algorithms are implemented with a common interface, inherited from an

abstract parent class, so the choice of which implementation to use can

be made at runtime. The use of this design pattern makes KeyFinder’s

computational model extensible, since it is straightforward to implement

new algorithms conforming to the same interface.

The actual instantiation of these objects is handled by a factory, an OOP

concept that forms the foundation of several design patterns as discussed

by Freeman et al. (2004, p.117). In the case of KeyFinder, the factories

are static methods that decouple the instantiation of concrete implementa-

tions from the classes that use them. Rather than instantiating an object

itself, the executing code simply calls the factory method and is passed an

object of the appropriate class. This reduces coupling, since the execut-

ing code is not required to know any more than the interface which the

concrete class implements.

The initialisation of some objects is relatively expensive, as in the creation

of KeyFinder’s spectral analysis kernels. Here the factory employs the

Singleton pattern, which ensures that only one instance of a class can

exist (Freeman et al. 2004, p.177). In this case, the Singleton is a globally

accessible repository of spectral analysers, each of which is instantiated

just once and persists for reuse.

The user interface is based on the Model-View-Controller architecture,

isolating the application logic in a worker model which asynchronously

passes data to the views as it becomes ready.

3.2 Choice of language and libraries

KeyFinder is written in C++, due to the author’s familiarity with the

language, the requirement for high performance and OOP principles, and

the need to maintain cross-platform portability. Furthermore, most of the

mature and widely supported libraries in the problem domain are written

3. SOFTWARE IMPLEMENTATION 33

in C and C++ .

To decode audio files, KeyFinder initially used LibSndfile version 1.0.23

(de Castro Lopo 2010), and later migrated to LibAV version 0.7 (LibAV

community 2011), both written in C. One of the sample rate conversion al-

gorithms employs Secret Rabbit Code version 0.1.7 (de Castro Lopo 2009),

and the primary spectral analyser integrates FFTW version 3.2.2 (Frigo

and Johnson 2009), both in C. TagLib version 1.7 (Wheeler 2011), written

in C++, is integrated for the reading and writing of audio file metadata.

After an initial command line implementation for Linux, KeyFinder was

ported to the Apple Mac and the Qt1 framework, version 4.7.4 (Nokia et

al. 2011). This framework was initially chosen because it enables the de-

velopment of user interfaces native to Mac OS X’s Cocoa API, without the

need to port the original C++ code to Objective-C. Several other advan-

tages presented themselves over the course of development, most notably

the simplicity of implementing multithreading.

3.3 User interface

KeyFinder has two primary interfaces, each developed to implement one

of the core use cases (see section 1.3.1).

The first thing the user sees upon launching the software is the batch in-

terface (figure 3.2). This is a straightforward tabular presentation, which

is populated with the paths and metadata of audio files dragged onto the

window. There is a single, obvious button to begin a batch estimation

process on the files, which activates a progress bar indicating the propor-

tion of files completed (figure 3.3). The interface is intended to match the

user’s expectations for batch processing, and as such has common features

like copying text data to the clipboard, the option to revert to a previous

state and re-run a batch, and alerting the user with a sound when a batch

job is complete.

1Pronounced “cute”.

3. SOFTWARE IMPLEMENTATION 34

Figure 3.2: Screenshot of the batch processing interface at launch

Figure 3.3: Screenshot of the batch processing interface in operation

3. SOFTWARE IMPLEMENTATION 35

Figure 3.4: Screenshot of the detailed analysis interface. Recording illustrated
is Brown Paper Bag by Roni Size Reprazent.

The other main feature the batch interface offers, accessible via shortcut

key or context menu, is to launch the detailed analysis interface for a

selected audio file.

The detailed analysis window (figure 3.4) aims to illustrate the workings

of the KeyFinder algorithms. Working from the top of the screen down,

it highlights the key stages of the analysis. First and most prominently,

a full chromagram (72 bins by default) is shown, which offers the user

a quick visual association with the recording; it is normally possible to

immediately distinguish the major sections of a song (verse, chorus, and

so forth). The time axis of this chromagram is maintained throughout the

other elements vertically aligned on the screen.

The next element down the screen is the reduced 12-bin chromagram,

which is the basis for further analysis. Both the chromagrams are aligned

to a representation of a piano keyboard, indicating the mapping of the

data to musical notes. This can often enable a musically skilled user to

determine the tonal content of the piece by sight, and it was found during

3. SOFTWARE IMPLEMENTATION 36

Figure 3.5: Screenshot of the KeyFinder menu bar.

Figure 3.6: Screenshot of a section of the Preferences pane.

experiments to be a very useful feature when KeyFinder’s estimations were

incorrect.

The last two elements of the interface are useful if segmentation is enabled

(see section 2.4). The first is a representation of the rate of harmonic

change in the musical signal; the peaks used for segmentation are usually

obvious. The final element displays the segmentation yielded by the rate

of change curve, and the key classifications for each segment. Key classifi-

cations are colour coded, so that an incorrect estimation for some segment

of the recording will usually appear immediately incongruous. The final

key estimate is rendered at the bottom of the screen.

These interfaces are supported by a standard menu bar (figure 3.5), which

3. SOFTWARE IMPLEMENTATION 37

includes the ability to open multiple copies of each window, as well as

launching the Preferences pane (figure 3.6), which allows the user to con-

figure the many parameters of the KeyFinder algorithms.

3.4 Class overview

KeyFinder’s computational model is primarily managed by a single class,

the KeyFinderWorkerThread. This is derived from the Qt framework’s

QThread class, allowing all analysis work to be carried out in a distinct

thread without affecting the operation of the user interface.

The same model is employed by both primary GUI windows. The worker

thread sends a signal to its parent window when some data element is

ready for display (e.g. a chromagram, the rate of change curve, or a key

estimate). The batch window is uninterested in most of these, dealing only

with the final key estimate, but the detail window receives and displays

each element in turn.

3
.

S
O
F
T
W
A
R
E

IM
P
L
E
M
E
N
T
A
T
IO

N
38

AudioStream

+stream
-channels
-frameRate
-samples

+getChannels()
+setChannels()
+getFrameRate()
+setFrameRate()
+getSample()
+setSample()
+getSampleCount()
+addToSampleCount()
+reduceToMono()

Chromagram

-chromaData
-hops
-bins

+getHops()
+getBins()
+getMagnitude()
+setMagnitude()
+reduceTuningBins()
+reduceToOneOctave()

KeyFinderWorkerThread

-filePath

+setParams()
+start()

<<abstract>>
AudioFileDecoder

+getDecoder()

LibAvDecoder

+decodeFile()
-decodePacket
-mutexManager()

+getDownsampler()

PrimaryDownsampler

+downsample()

LibSrcDownsampler

+downsample()

SpectrumAnalyserFactory

-instance

+getInstance()
+getSpectrumAnalyser()

<<abstract>>
SpectrumAnalyser

<<abstract>>
Downsampler

FftwAnalyser

+getChromagram()

<<abstract>>
FftPostProcessor

+getFftPostProcessor()

ConstantQPostProc

+getChromaVector()

DirectSkPostProc

+getChromaVector()

GoertzelAnalyser

+getChromagram()

+getSegmentation()

<<abstract>>
Segmentation

HarteHcdf

+getRateOfChange()
+getSegments()

ArbitrarySegmentation

+getSegments()

NoSegmentation

+getSegments()

KeyClassifier

+classify()

ToneProfile

+correlation()
+cosineSimilarity()

generates 1

1

affects

1

1

reads1

1

writes 1

1

reads1

1

reads

1

1

WindowFunctions

+window()

1

1

1

1

1 11..* 0..*

1

1

2

1

1

25

1 0..*

1

1

1

1

1

1

1

1

Figure 3.7: Class diagram for the KeyFinder estimation model

3. SOFTWARE IMPLEMENTATION 39

The class diagram in figure 3.7 illustrates the interaction between the

worker thread and the main algorithms. For the sake of legibility, only

the most important properties and methods are shown. Also omitted from

this diagram is the Preferences class, which contains the parameters

chosen in the preferences dialog described above. The parameters are

initially set for a thread of analysis with the setParams() method of

KeyFinderWorkerThread, and are passed around between the operational

classes during the thread’s execution.

Note the application of the Singleton pattern for the SpectrumAnalyser-

Factory, the Strategy pattern for the AudioFileDecoder, Downsampler,

SpectrumAnalyser, FftPostProcessor and Segmentation, and the im-

plementation of static factory methods for each of these abstract classes.

The interaction between the user interface and the core computational

model is illustrated by figure 3.8. Note that each window instance has

its own worker thread, and that the Preferences class is composed into

most other objects (this is also the case, though not illustrated, with the

core computational objects).

3.5 Testing

Functional testing was carried out by means of a series of regression tests

and by unit testing of the core algorithms. The Qt framework’s support

for automated unit testing is sadly lacking, so the unit tests are compiled

as a separate binary when certain build options are set for the project.

The unit tests include, but are not limited to:

• audio format decoding: the same known waveform was transcoded

into multiple formats and the accuracy of the decoding is tested in

each case;

• downsampling: the effect of each downsampling algorithm on a known

waveform is tested;

3. SOFTWARE IMPLEMENTATION 40

Preferences

getDownsampleFactor()
getFrequencies()
getHopSize()
getSpectrumAnalyser()
getTemporalWindow()
getFftFrameSize()
getFftPostProcessor()
getTuningMethod()
getSegmentation()
getToneProfile()
getSimilarityMeasure()

KeyFinderWorkerThread

-filePath

+setParams()
+start()

TagLibMetadata

-File

+getArtist()
+getTitle()
+getGrouping()
+setGrouping()

BatchWindow

-filePaths

+filesDropped()
-getMetadata()
-analyseFile()
+receiveGlobalKeyEstimate()
-setMetadata()

DetailWindow

-filePath

+fileDropped()
-getMetadata()
-analyseFile()
+receiveFullChromagram()
+receiveOneOctaveChromagram()
+receiveHarmonicChangeSignal()
+receiveKeyEstimates()
+receiveGlobalKeyEstimate()

1 1

1
1

1

1 1

0..1 0..1

PreferencesDialog

-loadPreferences()
-savePreferences()

1

1 1

1

10..1

0..1

Figure 3.8: Class diagram for the main user interface

3. SOFTWARE IMPLEMENTATION 41

• spectral analysis: the output of the spectrum analysers for a known

tonal input is tested;

• tuning: the effect of each tuning algorithm on a known chromagram

is tested.

• functions of the main data storage classes: all mutators of the Audio-

Stream and Chromagram are tested for the normal flow and excep-

tional cases.

The regression testing involved ensuring that the KeyFinder application

continued to return the same results for a given data set of a few hundred

songs, given the same parameters; this was completed for each major build.

Non-functional testing was mainly limited to informal tests of the par-

allelisation, resource use and speed of the application. In particular, it

was ensured that the software dealt gracefully with concurrent access by

a number of threads to a single resource (e.g. an external audio file or

internal spectral analysis kernel), that successive builds made much the

same use of system memory for a given task, and that the time taken to

complete a known task remained similar.

3.6 Summary

This section outlined the software engineering principles underlying KeyFinder,

and described the design and testing of the system and the integration of

library code. Section 4 below presents the results of the experiments con-

ducted to test KeyFinder’s accuracy, and shows the reasoning behind the

default values for the software’s parameters.

4 Experiments

This section describes the experiments carried out to test and optimise

KeyFinder’s performance. It introduces the data sets used for these ex-

periments and the scoring method, and presents the results of varying the

key parameters of the algorithms. KeyFinder’s performance is compared

to two popular existing applications.

4.1 Data sets

The primary data set is a collection of 100 dance music recordings. These

were randomly selected from the author’s own DJ playlists; the key of

each recording was manually classified and verified by another musician.

Where there was disagreement, a key classification was arrived at with the

help of another musically-trained expert.

The vast majority of the recordings are in minor keys, which is a sig-

nificant characteristic of dance music generally. They mostly have very

few, if any, key changes, and are almost all tuned to the A440 standard

(though several songs are composed of samples of other recordings, which

are sometimes tuned inconsistently with other elements). There are sev-

eral genres represented, and the music is split fairly evenly across the last

two decades (with one exception that dates from 1976).

The secondary data set is drawn from The Beatles’ back catalogue; 179

songs from 12 albums. This collection is not particularly relevant to the

DJ, but is in common use by the music information retrieval community.

As such there were existing key classifications (Mauch et al. 2009) which

serve as ground truth for these experiments.

42

4. EXPERIMENTS 43

Table 4.1: MIREX score weightings
Key relation Score

Exact match (tonic) 1.0

Perfect fifth (dominant) 0.5

Perfect fourth (subdominant) 0.5

Relative major/minor 0.3

Parallel major/minor 0.2

The data sets, which are composed of uncompressed WAV files, are listed

in full in appendices A and B.

4.2 Measuring success

As stated in section 1, the goal of this project is to achieve the best

possible accuracy in key estimation for DJs. The experiments below all

measure the accuracy of KeyFinder’s results as compared to the ground

truth classifications.

Due to its relevance to the problem domain, accuracy in the primary

data set is favoured over the Beatles collection. The secondary data set

serves mainly to ensure that KeyFinder’s configuration is not overly biased

towards dance music, to the exclusion of its possible application to other

musical genres.

The method of scoring used below was developed for the Music Infor-

mation Retrieval Evaluation eXchange (MIREX), an annual evaluation

campaign for music information retrieval algorithms (ISMIR 2005). This

method gives full credit to key classifications which match the ground

truth exactly, and partial credit to estimations closely related to the cor-

rect answer (see table 4.1; these relationships are introduced in section

1.2.7). As noted by Noland (2009, p.53), the MIREX measure is more

valuable than a simple count of exact matches, being “more closely re-

lated to both music theory and perception than one that gives a zero

score to both the dominant key and the key furthest away on the circle of

fifths”.

4. EXPERIMENTS 44

2 4 6
0

10

20

30

40

50

60

70

80

90

100

Primary MIREX Beatles MIREX

Figure 4.1: Frequency analysis range. The horizontal axis denotes the number
of octaves analysed.

In each experiment, MIREX scores are given for both collections. Since the

primary data set contains 100 songs, the scores for the Beatles collection

are normalised (divided by 1.79) for ease of comparison.

4.3 Parameter testing

Several parameters have an effect on the overall accuracy of KeyFinder.

These are considered in the order they are applied (see section 2.1). The

full parameters for each experiment are listed in appendix C.

4.3.1 Frequency analysis range

The first parameter to consider is the breadth of frequencies to analyse.

Figure 4.1 illustrates the effects of broadening the analysis range, start-

ing with two octaves from C3 to B4, and adding an octave on either side

for each step. The results for the primary data set improve as the more

extreme bass and treble are included, while the Beatles collection is not

4. EXPERIMENTS 45

2^9 2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18
0

10

20

30

40

50

60

70

80

90

100

Primary MIREX Beatles MIREX

Figure 4.2: Spectral transform resolution. The horizontal axis denotes the
number of samples in the Fast Fourier Transform, expressed in powers of 2.
Hop sizes are always 1/4 of the analysis frame size.

significantly affected. Continuing to add further octaves beyond 6 was

found to be detrimental to the results from both collections, so this pa-

rameter is set at 6 octaves (from C1 to B6, or ∼32.7 Hz to ∼1975 Hz)

henceforth.

4.3.2 FFT resolution

As discussed in section 2.3.1, the number of input samples N to the Fast

Fourier Transform determines the resolution of its frequency domain out-

put. In a musical analysis, the most obvious advantage of a high resolution

is greater accuracy at the lower, bass end of the spectrum.

KeyFinder’s accuracy is charted for a range of values of N in figure 4.2.

For our default starting frequency, the practical minimum for N is 211,

since any lower power of two provides insufficient spectral resolution to

distinguish between adjacent notes of the lowest octaves. Beyond this,

there is little difference in the results. The default is set at 214, which pro-

vides a reasonable analysis length for capturing musical features; analysis

4. EXPERIMENTS 46

CQT Direct SK
0

10

20

30

40

50

60

70

80

90

100

Primary MIREX Beatles MIREX

Figure 4.3: Comparison between results of Constant Q Transform and Direct
Spectral Kernel Transform. The DSK parameter p (see equation 2.6). is set to
3.8.

frames of ∼4 seconds, at intervals of ∼1 second.

4.3.3 Spectral kernel bandwidth

As noted in section 2.3.3, the directly-computed spectral kernel (DSK) de-

veloped during this project can very closely model the Constant Q Trans-

form; figure 4.3 illustrates the similarity between the results of the CQT

and the new algorithm when properly parameterised.

Figures 4.4 and 4.5 show the most important aspect of the DSK: the pa-

rameter p that varies the bandwidth of the spectral windows enables a

significant increase in accuracy. Note in particular the effect illustrated

by the chromagrams in figure 4.5; when p is reduced there is a much

tighter focus on the frequencies of interest, eliminating the vertical smear-

ing between bins caused by the large overlaps between the wider spectral

windows (as illustrated in figure 2.4 above). The default value for this

parameter is set at 0.8.

4. EXPERIMENTS 47

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

10

20

30

40

50

60

70

80

90

100

Primary MIREX Beatles MIREX

Figure 4.4: Results of narrowing spectral kernel bandwidth. The horizontal
axis denotes the parameter p (see equation 2.6).

4.3.4 Tuning algorithms

As briefly noted in section 2.3.6, neither of the tuning algorithms improved

KeyFinder’s results. In fact, as illustrated in figure 4.6, Harte’s algorithm

reduced accuracy on the primary data set significantly, though it did im-

prove the results for the Beatles by nearly as much. This is perhaps not

surprising, as the Beatles collection was the primary basis for Harte’s own

experiments (Harte 2010, p.223). The bin-adaptive algorithm developed

during this project has little effect on the results for either collection (fig-

ure 4.7). The default for KeyFinder is therefore to generate an initial

chromagram with only one bin per semitone, so that no accounting for

tuning is required.

4.3.5 Segmentation

As illustrated in figure 4.8, segmentation of the chromagram has no pos-

itive effect on KeyFinder’s accuracy. The default behaviour is therefore

not to segment the recording in the time dimension.

4. EXPERIMENTS 48

Figure 4.5: Chromagrams demonstrating spectral kernel bandwidth parame-
terisation. The top image shows the output of the DSK with the parameter
p = 3.8, which closely models the Constant Q Transform. The bottom image
has p = 0.8, which is the default for KeyFinder. Recording illustrated is Je
Veux Te Voir by Yelle.

4. EXPERIMENTS 49

1 3 5
0

10

20

30

40

50

60

70

80

90

100

Primary MIREX Beatles MIREX

Figure 4.6: Harte’s tuning algorithm. The horizontal axis denotes the number
of bins per semitone; when this is 1, no tuning is applied.

1 3 5
0

10

20

30

40

50

60

70

80

90

100

Primary MIREX Beatles MIREX

Figure 4.7: Bin-adaptive tuning algorithm. The horizontal axis denotes the
number of bins per semitone; when this is 1, no tuning is applied.

4. EXPERIMENTS 50

None HCDF Arb 3 Arb 5
0

10

20

30

40

50

60

70

80

90

100

Primary MIREX Beatles MIREX

Figure 4.8: Effects of chromagram segmentation. The horizontal axis denotes
the type of segmentation applied; from left to right: no segmentation, Harte’s
harmonic change detection function, arbitrary division into 3 equal segments,
and arbitrary division into 5 equal segments.

4.3.6 Tone profiles and similarity measure

The method chosen for the key classification has a greater effect on KeyFinder’s

results than any other parameter, as illustrated in figure 4.9.

It is worth noting that the profiles from the literature tend to provide much

greater accuracy for the Beatles than for the dance music collection. This

validates the motivation of this project in designing a system primarily for

the analysis of dance music, but it also justifies enabling the user to select

from a range of profiles (and to define their own) to best match their own

music collection. It is clear, even from the limited contrast afforded by

these data sets, that there are different tonal characteristics to be found

in different musical genres.

KeyFinder defaults to using the author’s profiles since they provide the

best accuracy for the primary data set. Also, the cosine similarity measure

is shown to be consistently more effective than correlation for the primary

data set, and is used as the default.

4. EXPERIMENTS 51

K cr K cs T cr T cs G cr G cs S cr S cs
0

10

20

30

40

50

60

70

80

90

100

Primary MIREX Beatles MIREX

Figure 4.9: Tone profiles and similarity measure. On the horizontal axis, K
denotes profiles by Krumhansl, T Temperley, G Gómez Gutiérrez and S the
author. The suffix cr denotes the correlation similarity measure, and cs denotes
the cosine similarity measure.

4.4 Comparison to other software

There are existing free and commercial key estimation software products

aimed at DJs, but those in common use are proprietary and their algo-

rithms have not been published. In order to place KeyFinder’s results in

context, figure 4.10 presents comparative analyses of the data sets using

recent versions of the two most popular packages, Rapid Evolution (free,

version 2.13.13 and version 3 beta 52) and Mixed In Key (commercial,

version 4.1). More details of the results are listed in tables 4.2 and 4.3.

KeyFinder’s default parameters provide significantly greater accuracy for

the primary data set than the other packages. Its results for the Beatles

data collection are the lowest of the four (though comparable to the nearest

competitor, Mixed In Key), but KeyFinder’s flexibility is its strength here.

As shown in figures 4.6 and 4.9, KeyFinder can be configured to almost

match the accuracy of Rapid Evolution on the Beatles recordings; and

it scores several points higher on the primary collection even with those

4. EXPERIMENTS 52

Rapid Evolution 2 Rapid Evolution 3 beta Mixed In Key KeyFinder
0

10

20

30

40

50

60

70

80

90

100

Primary MIREX Beatles MIREX

Figure 4.10: Comparison of KeyFinder to existing tools.

Table 4.2: Detailed results from software comparison, primary data set
RE 2.13.13 RE 3b52 MIK 4.1 KeyFinder

Exact matches 39 36 51 59

Related by perfect fifth 6 4 7 2

Related by perfect fourth 7 6 8 11

Relative key 6 6 6 5

Parallel key 18 17 9 8

Incorrect 24 31 19 15

MIREX score 50.9 46.2 62.1 68.6

Table 4.3: Detailed results from software comparison, Beatles data set
RE 2.13.13 RE 3b52 MIK 4.1 KeyFinder

Exact matches 118 124 79 83

Related by perfect fifth 3 3 4 1

Related by perfect fourth 19 18 18 27

Relative key 4 4 26 17

Parallel key 13 11 31 8

Incorrect 22 19 21 43

MIREX score 132.8 137.9 104.0 103.7

4. EXPERIMENTS 53

parameters.

KeyFinder also works much faster than the other packages. To analyse

the author’s entire music collection of 5604 audio files, KeyFinder took 4

hours 45 minutes, while Rapid Evolution 2 took 11h 56m and the Rapid

Evolution 3 beta release took 12h 47m. It is not possible to make an

entirely fair comparison with Mixed In Key since it also analyses recordings

for tempo during a batch job, but it took 13h 14m to complete the task.

These experiments were run on a 2007 MacBook Pro with a 2.4GHz Intel

Core 2 Duo processor and 4GB of RAM.

4.5 Summary

This section presented the results of the project’s key experiments. It

described the ground truth data and scoring method used for measuring

success, and illustrated how the default parameters for the KeyFinder soft-

ware were chosen to maximise the accuracy of the results. A comparison

with the results of the most popular existing applications was presented,

in which KeyFinder scored higher on the primary data set than the other

packages.

The last section concludes the project report by considering the contribu-

tions and limitations of the project, as well as possible further work.

5 Conclusions and future work

This report describes the design and implementation of KeyFinder, a soft-

ware package which can estimate the key of digital music recordings, with

a particular focus on modern dance music and the workflow of the DJ. This

final section brings together the conclusions of the project, and considers

opportunities for further work on the problem.

5.1 Contributions

The most obvious result of the project is that KeyFinder demonstrates

some success in improving key estimation accuracy for dance music, per-

forming significantly better than the most popular implementations in the

field for a small data set.

The software makes other novel contributions to the DJ community. The

many parameters controlling KeyFinder’s algorithms are customisable by

the user, unlike in the other software tested; this may enable tailoring

to particular musical genres, as we have seen to some extent with the

secondary data set.

The detailed analysis interface not only illustrates the working of the key

estimation algorithms, but provides a general purpose musical visualisa-

tion tool apparently unique in the DJ software world.

In terms of contributions to the wider music information retrieval field,

the project presents an efficient, flexible alternative to a spectral transform

algorithm used in many other audio analysis tools.

54

5. CONCLUSIONS AND FUTURE WORK 55

5.2 Limitations

The least satisfactory aspect of the project is the size of the data set. 100

recordings is too small a sample size to be confident in KeyFinder’s results,

as it may have led to a bias in the development and parameterisation of the

algorithms that will limit their usefulness. Unfortunately the time scale of

this project did not allow the manual classification of a larger selection of

recordings, and there are apparently no pre-existing annotated data sets

of dance music that have an appropriate or consistent level of accuracy.

Even the Beatles collection, extensive and varied though it is, seems an

obviously limited sample.

The tone profile correlation method of key estimation employed by KeyFinder

is less favoured in some recent work such as Noland’s (2009, p.57). It has

clear limitations as it does not capture the order, progression or other

context of musical events, which certainly play a part in a human’s esti-

mation of key. While the project has had some success in applying the

tone profile model, it would have been ideal to consider other methods as

well.

With regards to the software implementation, circumstances did not allow

the testing of many audio file formats1, though in theory the integration

of the LibAV libraries should enable the analysis of a very broad range of

containers and codecs.

One of the stated requirements for the software was portability to Mi-

crosoft Windows. This should not be particularly complicated given the

use of the Qt framework, but it has not been attempted.

A minor bug in the current implementation is that files whose names

contain non-ASCII characters cannot be analysed. Again, this should be

possible to fix, but was not a priority during the project.

1WAV, AIFF, MP3, MP4 with ALAC encoding, and FLAC were tested during the project.

5. CONCLUSIONS AND FUTURE WORK 56

5.3 Future work

The project has highlighted some areas where further work would be ben-

eficial. Most obviously, the development of a large, trustworthy data set of

expertly annotated dance music would simplify the work of development

and testing in future2.

The similarity measures employed by KeyFinder in the classification against

tone profiles assume that chroma vectors exist in a uniform space, but the

literature shows other ways of modelling spaces, reflecting the principles

of music theory and aspects of human acoustic perception. For exam-

ple, Harte’s (2010, p.77-79) harmonic change detection function places

chroma vectors in a space whose dimensions map close harmonic rela-

tionships like perfect fifths and major/minor thirds to small Euclidean

distances, and distant harmonic relationships to larger distances. Since

this is already implemented in KeyFinder, there may be value in investi-

gating the application of this spatial model, or something like it, to tone

profile classification.

Perhaps the most practical direction for KeyFinder in its current form is

in developing parameter sets that are known to yield good accuracy for

particular musical genres. The divergent results for the primary and Bea-

tles collections in some of the experiments show that there are methods

that work well for certain styles but not for others. Another observation

made during experimentation is that hip-hop music (which did not make

up a large proportion of the data set) is difficult to analyse, as rap vocal

parts are usually loud and atonal. Informal experimentation suggested

that parameterising the analysis to discard the vocal frequency range for

those recordings yielded better accuracy. There may be other such op-

timisations for a variety of styles, which could be saved as user-friendly

patches and shared around the community.

2The author of the Rapid Evolution software hosts an online database of audio file metadata
for DJs at http://www.mixshare.com, which is an excellent start, but entries are not verified
and the data is thus unsuitable for scientific work.

http://www.mixshare.com

A Primary data set

100 songs of various dance music genres, chosen at random from the au-

thor’s collection. The key classifications were initially made by the author

and verified by two musical experts.

Table A.1: Primary data set and ground truth key classifications

Artist Title Key

Adam F Circles (Album Edit) Dm

Air Sexy Boy Dm

Arrested Development People Everyday Em

B-Complex Beautiful Lies (VIP Mix) Dm

Beenie Man Who Am I? (Playground Mix) Bm

Benga Crunked Up G[m

Beyoncé Crazy In Love Dm

Bodyrox Yeah Yeah (feat Luciana) (D Ramirez Vocal Club Mix) C

Boys Noize Yeah Dm

Breakbeat Era Animal Machine B[m

Britney Spears Toxic (Armand Van Helden Remix) Cm

Brookes Brothers Tear You Down E[m

Calvin Harris Acceptable In The 80s E

Chase & Status Can’t Get Enough D[m

Chase & Status Eastern Jam Em

Chase & Status Streetlife (feat Takura) Dm

The Chemical Brothers Dig Your Own Hole E[m

Commix Be True A[m

Cyantific Brighter Day (feat Natalie Williams) G[m

Daft Punk Harder, Better, Faster, Stronger G[m

Dan Le Sac Thou Shalt Always Kill (feat Scroobius Pip) B[m

De La Soul All Good? (feat Chaka Khan) Am

Dead Prez Hip-Hop Am

DJ DeeKline Steam (feat Wizard and DJ Fresh) B[m

DJ Fresh Golddust (feat Ce’cile) G

DJ Hazard Evac Q 8 A[m

DJ Rap Bad Girl (Roller Remix) B[m

DJ SS The Lighter Cm

DJ Zinc Super Sharp Shooter Gm

Dom Almond Shake It (Philipe Boyar Remix) Fm

Dom And Roland Thunder (Remix) G[m

57

APPENDIX A. PRIMARY DATA SET 58

Artist Title Key

Double 99 Ripgroove (feat Top Cat) (Vocal Club Mix) Fm

Duck Sauce Barbra Streisand E[

edIT Straight Heat Fm

Faithless Insomnia (Monster Mix) Bm

Fugees Ready Or Not (DJ Zinc Remix) Am

Gabby Young and Other Animals We’re All In This Together (Ibrahim’s D’n’B Mix) D[m

Ges-E Streets Of Basra Bm

Goose Black Gloves Em

Gorillaz Clint Eastwood (Ed Case & Sweetie Irie Refix) E[m

High Contrast Kiss Kiss Bang Bang Gm

Josh Wink Higher State Of Consciousness (Tweekin’ Acid Funk) G

Jurassic 5 Concrete Schoolyard C

Justice vs Simian Never Be Alone Am

Katy B Katy On A Mission Cm

Kelis Milkshake (Freq Nasty’s Hip Hall Mix) D[m

Kloe & Imprintz It’s Time Em

Krafty Kuts Happiness (feat A-Skillz) A[

Ladytron Destroy Everything You Touch Em

Laurent Garnier The Sound Of The Big Babou B[

LCD Soundsystem Tribulations Bm

Leftfield Phat Planet A[m

Leftfield Song Of Life Cm

Leftfield Space Shanty G

London Elektricity Just One Second (Apex Remix) G[m

Lowkey I’m Back Gm

Luniz I Got 5 On It (Aphrodite’s Original Dubplate) B[m

M-Beat Sweet Love (feat Nazlyn) B[

Max Romeo & The Upsetters Chase The Devil Am

Mickey Finn & Aphrodite Bad Ass Gm

Missy Elliott Get Ur Freak On Fm

Moving Fusion Turbulence A[m

Mr Oizo Flat Beat Bm

Mylo Drop The Pressure Em

Nero Requiem Gm

Netsky Secret Agent B[m

Noisia Shellshock (feat Foreign Beggars) Fm

Noisia Stigma G

Northern Lite Treat Me Better A[m

Omni Trio Secret Life Fm

Orbital Doctor? Em

Orbital Nothing Left (feat Alison Goldfrapp) (Short Version) A

Outkast Hey Ya! G

Peaches I Feel Cream E[m

Pendulum Tarantula (feat Fresh, Spyda and Tenor Fly) Dm

Prodigy Breathe E[m

Prodigy Out Of Space A[m

Prodigy Poison E

Prodigy Smack My Bitch Up B[m

APPENDIX A. PRIMARY DATA SET 59

Artist Title Key

Prodigy Voodoo People (Pendulum Remix) A[m

Radiohead Idioteque E[

Roni Size Reprazent Brown Paper Bag Em

Roots Manuva Witness (1 Hope) A[m

Röyksopp Eple Fm

Röyksopp The Girl And The Robot Am

Saint Etienne Only Love Can Break Your Heart Dm

Shimon & Andy C Bodyrock Bm

Shy FX On The Run (feat David Boomah) B[m

Shystie Nu Style (DeeKline & Ed Solo Mix) Em

SL2 On A Ragga Tip A

Souvlaki Inferno (Fired Up Mix) Em

Spor Aztec B

Squarepusher My Red Hot Car G[m

Sub Focus Triple X C

Substatic Wild Horses (Demo) Em

Tori Amos Professional Widow (Armand’s Star Trunk Funkin’ Mix) Dm

The Wiseguys Ooh La La D[

Wu-Tang Clan Gravel Pit Am

Xample Keep Their Heads Ringing Fm

Yelle Je Veux Te Voir Am

B Beatles data set

179 songs from 12 albums by The Beatles. The key classifications are by

Mauch et al. (2009); where a song was annotated as changing key, the

global key chosen was that which lasted for the greatest proportion of

the song. Note that the atonal Revolution 9, track 29 of The Beatles, is

excluded.

Table B.1: Secondary data set and ground truth key classifications

Album # Title Key

Please Please Me 1 I Saw Her Standing There E

Please Please Me 2 Misery C

Please Please Me 3 Anna (Go To Him) D

Please Please Me 4 Chains B[

Please Please Me 5 Boys E

Please Please Me 6 Ask Me Why E

Please Please Me 7 Please Please Me E

Please Please Me 8 Love Me Do G

Please Please Me 9 P.S. I Love You D

Please Please Me 10 Baby It’s You G

Please Please Me 11 Do You Want To Know A Secret E

Please Please Me 12 A Taste Of Honey G[m

Please Please Me 13 There’s A Place E

Please Please Me 14 Twist And Shout D

With The Beatles 1 It Won’t Be Long E

With The Beatles 2 All I’ve Got To Do E

With The Beatles 3 All My Loving E

With The Beatles 4 Don’t Bother Me Em

With The Beatles 5 Little Child E

With The Beatles 6 Till There Was You F

With The Beatles 7 Please Mister Postman A

With The Beatles 8 Roll Over Beethoven D

With The Beatles 9 Hold Me Tight F

With The Beatles 10 You Really Got A Hold On Me A

With The Beatles 11 I Wanna Be Your Man E

With The Beatles 12 Devil In Her Heart G

With The Beatles 13 Not A Second Time G

With The Beatles 14 Money (That’s What I Want) E

60

APPENDIX B. BEATLES DATA SET 61

Album # Title Key

A Hard Day’s Night 1 A Hard Day’s Night G

A Hard Day’s Night 2 I Should Have Known Better G

A Hard Day’s Night 3 If I Fell D

A Hard Day’s Night 4 I’m Happy Just To Dance With You E

A Hard Day’s Night 5 And I Love Her E

A Hard Day’s Night 6 Tell Me Why D

A Hard Day’s Night 7 Can’t Buy Me Love C

A Hard Day’s Night 8 Any Time At All D

A Hard Day’s Night 9 I’ll Cry Instead G

A Hard Day’s Night 10 Things We Said Today Am

A Hard Day’s Night 11 When I Get Home C

A Hard Day’s Night 12 You Can’t Do That G

A Hard Day’s Night 13 I’ll Be Back A

Beatles For Sale 1 No Reply C

Beatles For Sale 2 I’m A Loser G

Beatles For Sale 3 Baby’s In Black A

Beatles For Sale 4 Rock And Roll Music A

Beatles For Sale 5 I’ll Follow The Sun C

Beatles For Sale 6 Mr. Moonlight G[

Beatles For Sale 7 Kansas City-Hey-Hey-Hey-Hey! G

Beatles For Sale 8 Eight Days A Week D

Beatles For Sale 9 Words Of Love A

Beatles For Sale 10 Honey Don’t E

Beatles For Sale 11 Every Little Thing A

Beatles For Sale 12 I Don’t Want To Spoil The Party G

Beatles For Sale 13 What You’re Doing D

Beatles For Sale 14 Everybody’s Trying To Be My Baby E

Help! 1 Help! A

Help! 2 The Night Before D

Help! 3 You’ve Got To Hide Your Love Away G

Help! 4 I Need You A

Help! 5 Another Girl A

Help! 6 You’re Gonna Lose That Girl E

Help! 7 Ticket To Ride A

Help! 8 Act Naturally G

Help! 9 It‘s Only Love C

Help! 10 You Like Me Too Much G

Help! 11 Tell Me What You See G

Help! 12 I’ve Just Seen a Face A

Help! 13 Yesterday F

Help! 14 Dizzy Miss Lizzy A

Rubber Soul 1 Drive My Car D

Rubber Soul 2 Norwegian Wood (This Bird Has Flown) E

Rubber Soul 3 You Won’t See Me A

Rubber Soul 4 Nowhere Man E

Rubber Soul 5 Think For Yourself G

Rubber Soul 6 The Word D

Rubber Soul 7 Michelle Fm

APPENDIX B. BEATLES DATA SET 62

Album # Title Key

Rubber Soul 8 What Goes On E

Rubber Soul 9 Girl Cm

Rubber Soul 10 I’m Looking Through You A[

Rubber Soul 11 In My Life A

Rubber Soul 12 Wait G[m

Rubber Soul 13 If I Needed Someone A

Rubber Soul 14 Run For Your Life D

Revolver 1 Taxman D

Revolver 2 Eleanor Rigby Em

Revolver 3 I’m Only Sleeping E[m

Revolver 4 Love You To Cm

Revolver 5 Here, There And Everywhere G

Revolver 6 Yellow Submarine G

Revolver 7 She Said She Said B[

Revolver 8 Good Day Sunshine A

Revolver 9 And Your Bird Can Sing E

Revolver 10 For No One B

Revolver 11 Doctor Robert B

Revolver 12 I Want To Tell You A

Revolver 13 Got To Get You Into My Life G

Revolver 14 Tomorrow Never Knows C

Sgt Pepper’s Lonely Hearts Club Band 1 Sgt Pepper’s Lonely Hearts Club Band G

Sgt Pepper’s Lonely Hearts Club Band 2 With A Little Help From My Friends E

Sgt Pepper’s Lonely Hearts Club Band 3 Lucy In The Sky With Diamonds G

Sgt Pepper’s Lonely Hearts Club Band 4 Getting Better C

Sgt Pepper’s Lonely Hearts Club Band 5 Fixing A Hole F

Sgt Pepper’s Lonely Hearts Club Band 6 She’s Leaving Home E

Sgt Pepper’s Lonely Hearts Club Band 7 Being For The Benefit Of Mr Kite Dm

Sgt Pepper’s Lonely Hearts Club Band 8 Within You Without You D[

Sgt Pepper’s Lonely Hearts Club Band 9 When I’m Sixty-Four D[

Sgt Pepper’s Lonely Hearts Club Band 10 Lovely Rita E

Sgt Pepper’s Lonely Hearts Club Band 11 Good Morning Good Morning A

Sgt Pepper’s Lonely Hearts Club Band 12 Sgt Pepper’s Lonely Hearts Club Band

(Reprise)

F

Sgt Pepper’s Lonely Hearts Club Band 13 A Day In The Life G

Magical Mystery Tour 1 Magical Mystery Tour D

Magical Mystery Tour 2 The Fool On The Hill D

Magical Mystery Tour 3 Flying C

Magical Mystery Tour 4 Blue Jay Way C

Magical Mystery Tour 5 Your Mother Should Know C

Magical Mystery Tour 6 I Am The Walrus A

Magical Mystery Tour 7 Hello Goodbye C

Magical Mystery Tour 8 Strawberry Fields Forever B[

Magical Mystery Tour 9 Penny Lane B

Magical Mystery Tour 10 Baby You’re A Rich Man G

Magical Mystery Tour 11 All You Need Is Love G

The Beatles 1 Back In The USSR A

The Beatles 2 Dear Prudence D

APPENDIX B. BEATLES DATA SET 63

Album # Title Key

The Beatles 3 Glass Onion Am

The Beatles 4 Ob-La-Di, Ob-La-Da B

The Beatles 5 Wild Honey Pie G

The Beatles 6 The Continuing Story Of Bungalow Bill C

The Beatles 7 While My Guitar Gently Weeps Am

The Beatles 8 Happiness Is A Warm Gun C

The Beatles 9 Martha My Dear E[

The Beatles 10 I’m So Tired A

The Beatles 11 Blackbird G

The Beatles 12 Piggies A

The Beatles 13 Rocky Racoon C

The Beatles 14 Don’t Pass Me By C

The Beatles 15 Why Don’t We Do It In The Road D

The Beatles 16 I Will F

The Beatles 17 Julia D

The Beatles 18 Birthday A

The Beatles 19 Yer Blues E

The Beatles 20 Mother Nature’s Son D

The Beatles 21 Everybody’s Got Something To Hide Ex-

cept Me And My Monkey

E

The Beatles 22 Sexy Sadie G

The Beatles 23 Helter Skelter E

The Beatles 24 Long, Long, Long F

The Beatles 25 Revolution 1 B

The Beatles 26 Honey Pie G

The Beatles 27 Savoy Truffle G

The Beatles 28 Cry Baby Cry G

The Beatles 30 Good Night G

Abbey Road 1 Come Together Dm

Abbey Road 2 Something C

Abbey Road 3 Maxwell’s Silver Hammer D

Abbey Road 4 Oh Darling A

Abbey Road 5 Octopus’s Garden E

Abbey Road 6 I Want You (She’s So Heavy) Dm

Abbey Road 7 Here Comes The Sun Am

Abbey Road 8 Because D[m

Abbey Road 9 You Never Give Me Your Money A

Abbey Road 10 Sun King E

Abbey Road 11 Mean Mr Mustard E

Abbey Road 12 Polythene Pam E

Abbey Road 13 She Came In Through The Bathroom Win-

dow

A

Abbey Road 14 Golden Slumbers Am

Abbey Road 15 Carry That Weight C

Abbey Road 16 The End A

Abbey Road 17 Her Majesty D

Let It Be 1 Two Of Us G

Let It Be 2 Dig A Pony A

APPENDIX B. BEATLES DATA SET 64

Album # Title Key

Let It Be 3 Across The Universe D

Let It Be 4 I Me Mine Am

Let It Be 5 Dig It F

Let It Be 6 Let It Be C

Let It Be 7 Maggie Mae G

Let It Be 8 I’ve Got A Feeling A

Let It Be 9 One After 909 B

Let It Be 10 The Long And Winding Road E[

Let It Be 11 For You Blue D

Let It Be 12 Get Back A

C Experiment parameter listings

This appendix lists the parameters for all the experiments detailed in

section 4. Left-aligned parameters are those which are required for all

experiments. Any indented parameters are dependent on the left-aligned

parameter above.

65

APPENDIX C. EXPERIMENT PARAMETER LISTINGS 66

Table C.1: Parameters of frequency analysis range experiment, figure 4.1
Parameter Value

Frequency analysis range VARIANT
Bins per semitone 1
Downsample factor 10
Hop size 212

Spectral analyser Direct spectral kernel transform
Frame size 214

Q stretch 0.8
Temporal window Blackman
Segmentation None
Tone profiles Sha’ath
Similarity measure Cosine

Table C.2: Parameters of FFT resolution experiment, figure 4.2
Parameter Value

Frequency analysis range C1 - B6
Bins per semitone 1
Downsample factor 10
Hop size VARIANT
Spectral analyser Direct spectral kernel transform

Frame size VARIANT
Q stretch 0.8

Temporal window Blackman
Segmentation None
Tone profiles Sha’ath
Similarity measure Cosine

Table C.3: Parameters of CQT and DSK comparison, figure 4.3
Parameter Value

Frequency analysis range C1 - B6
Bins per semitone 1
Downsample factor 10
Hop size 212

Spectral analyser VARIANT
Frame size 214

Q stretch 0.8
Temporal window Blackman
Segmentation None
Tone profiles Sha’ath
Similarity measure Cosine

APPENDIX C. EXPERIMENT PARAMETER LISTINGS 67

Table C.4: Parameters of DSK bandwidth experiment, figures 4.4 and 4.5
Parameter Value

Frequency analysis range C1 - B6
Bins per semitone 1
Downsample factor 10
Hop size 212

Spectral analyser Direct spectral kernel transform
Frame size 214

Q stretch VARIANT
Temporal window Blackman
Segmentation None
Tone profiles Sha’ath
Similarity measure Cosine

Table C.5: Parameters of Harte tuning algorithm experiment, figure 4.6
Parameter Value

Frequency analysis range C1 - B6
Bins per semitone VARIANT

Tuning algorithm Harte
Downsample factor 10
Hop size 212

Spectral analyser Direct spectral kernel transform
Frame size 214

Q stretch 0.8
Temporal window Blackman
Segmentation None
Tone profiles Sha’ath
Similarity measure Cosine

Table C.6: Parameters of bin-adaptive tuning algorithm experiment, figure 4.7
Parameter Value

Frequency analysis range C1 - B6
Bins per semitone VARIANT

Tuning algorithm Bin-adaptive
Downsample factor 10
Hop size 212

Spectral analyser Direct spectral kernel transform
Frame size 214

Q stretch 0.8
Temporal window Blackman
Segmentation None
Tone profiles Sha’ath
Similarity measure Cosine

APPENDIX C. EXPERIMENT PARAMETER LISTINGS 68

Table C.7: Parameters of tone profile and similarity measure experiment, figure
4.9

Parameter Value

Frequency analysis range C1 - B6
Bins per semitone 1
Downsample factor 10
Hop size 212

Spectral analyser Direct spectral kernel transform
Frame size 214

Q stretch 0.8
Temporal window Blackman
Segmentation None
Tone profiles VARIANT
Similarity measure VARIANT

Table C.8: KeyFinder default parameters, used for comparison to other soft-
ware, figure 4.10

Parameter Value

Frequency analysis range C1 - B6
Bins per semitone 1
Downsample factor 10
Hop size 212

Spectral analyser Direct spectral kernel transform
Frame size 214

Q stretch 0.8
Temporal window Blackman
Segmentation None
Tone profiles Sha’ath
Similarity measure Cosine

References

Lawrence Abbott. Approach To Music. George G. Harrap & Co, London,

1942.

Jonathan Berger. Website of Stanford University’s Center for Com-

puter Research in Music and Acoustics - Creative Arts: New Tools

and Technology and the Democratization of Craft, March 2009. URL

https://ccrma.stanford.edu/~brg/.

Benjamin Blankertz. Website of Westfälische Wilhelms-Universität

Münster’s Mathematics and Computer Science Department - The Con-

stant Q Transform, 2001. URL http://wwwmath.uni-muenster.de/

logik/Personen/blankertz/constQ/constQ.html.

Bill Brewster and Frank Broughton. Last Night A DJ Saved My Life: The

History Of The Disc Jockey, Second Edition. Headline, London, 2006.

Judith C. Brown. Calculation of a Constant Q Spectral Transform. Jour-

nal of the Acoustical Society of America, 89(1):425–434, 1991.

Judith C. Brown and Miller S. Puckette. An Efficient Algorithm for the

Calculation of a Constant Q Transform. Journal of the Acoustical Soci-

ety of America, 92(5):2698–2701, 1992.

Camelot Sound. Website of Camelot Sound - Easymix Harmonic Key

Selection. URL http://www.camelotsound.com/Easymix.aspx.

Elaine Chew. The Spiral Array: An Algorithm For Determining Key

Boundaries. Proceedings of the Second International Conference, ICMAI

2002, pages 18–31, 2002.

Erik de Castro Lopo. Website of the Secret Rabbit Code project, February

2009. URL http://www.mega-nerd.com/SRC/.

69

https://ccrma.stanford.edu/~brg/
http://wwwmath.uni-muenster.de/logik/Personen/blankertz/constQ/constQ.html
http://wwwmath.uni-muenster.de/logik/Personen/blankertz/constQ/constQ.html
http://www.camelotsound.com/Easymix.aspx
http://www.mega-nerd.com/SRC/

REFERENCES 70

Erik de Castro Lopo. Website of the LibSndFile project, October 2010.

URL http://www.mega-nerd.com/libsndfile/.

Tony Fisher. Website of the University of York’s Computer Science De-

partment - Interactive Digital Filter Design, September 1999. URL

http://www-users.cs.york.ac.uk/~fisher/mkfilter/.

Eric Freeman, Elisabeth Freeman, Kathy Sierra, and Bert Bates. Head

First Design Patterns. O’Reilly, Sebastopol CA, USA, 2004.

Matteo Frigo and Steven G. Johnson. Website of the Fastest Fourier

Transform in the West project, July 2009. URL http://www.fftw.

org/.

Emilia Gómez and Perfecto Herrera. Estimating the tonality of polyphonic

audio files: Cognitive versus machine learning modelling strategies. In

Proceedings of the 5th International Conference on Music Information

Retrieval, Barcelona, Spain, 2004.

Emilia Gómez Gutiérrez. Tonal Description of Music Audio Signals. PhD

thesis, Universitat Pompeu Fabra, 2006.

Christopher Harte. Towards Automatic Extraction of Harmony Informa-

tion from Music Signals. PhD thesis, Queen Mary University of London,

2010.

ISMIR. Website of the MIREX campaign, 2005. URL http://www.

music-ir.org/evaluation/mirex-results/audio-key/index.html.

Özgür İzmirli. Template Based Key Finding From Audio. In Proceedings

of the International Computer Music Conference, ICMC’05, Barcelona,

Spain, 2005.

Otto Károlyi. Introducing Music. Penguin, 1973.

Carol L. Krumhansl. Cognitive Foundations of Musical Pitch. Oxford

University Press, New York, 1990.

LibAV community. Website of the libav project, June 2011. URL http:

//libav.org/.

http://www.mega-nerd.com/libsndfile/
http://www-users.cs.york.ac.uk/~fisher/mkfilter/
http://www.fftw.org/
http://www.fftw.org/
http://www.music-ir.org/evaluation/mirex-results/audio-key/index.html
http://www.music-ir.org/evaluation/mirex-results/audio-key/index.html
http://libav.org/
http://libav.org/

REFERENCES 71

William Lovelock. The Rudiments of Music. G Bell, 1957.

Richard G. Lyons. Understanding Digital Signal Processing, Third Edi-

tion. Prentice Hall PTR, 2010.

Matthias Mauch, Chris Cannam, Matthew Davies, Simon Dixon, Christo-

pher Harte, Sefki Kolozali, and Dan Tidhar. OMRAS2 Metadata

Project 2009. In 10th International Conference on Music Information

Retrieval Late-Breaking Session, Kobe, Japan, 2009.

Nokia et al. Website of the Nokia corporation - Qt framework, June 2011.

URL http://qt.nokia.com/products/.

Katy Noland. Computational Tonality Estimation: Signal Processing and

Hidden Markov Models. PhD thesis, Queen Mary University of London,

2009.

Harry F. Olson. Modern Sound Reproduction. Van Nostrand Reinhold,

1972.

Steffen Pauws. Musical key extraction from audio. In Proceedings

of the 5th International Conference on Music Information Retrieval,

Barcelona, Spain, pages 96–99, 2004.

Geoffroy Peeters. Musical Key Estimation of Audio Signal based on Hid-

den Markov Modeling of Chroma Vectors. In Proceedings of the 9th

International Conference on Digital Audio Effects, DAFx-06, Montreal,

Canada, 2006.

Ulf Poschardt. DJ Culture. Quartet, 1998.

Stanley Sadie, editor. The New GROVE Dictionary of Music and Musi-

cians. Macmillan, London, 1980.

David Temperley. What’s Key for Key? The Krumhansl-Schmuckler

Key-Finding Algorithm Reconsidered. Music Perception: An Interdis-

ciplinary Journal, 17(1):65–100, 1999.

Scott Wheeler. Website of the TagLib project, March 2011. URL http:

//developer.kde.org/~wheeler/taglib.html.

http://qt.nokia.com/products/
http://developer.kde.org/~wheeler/taglib.html
http://developer.kde.org/~wheeler/taglib.html

	Abstract
	Acknowledgements
	Introduction
	The DJ and mixing music
	Music theory
	Notes
	Octaves
	Tuning
	Scales
	Keys
	Consonance
	Key compatibility

	Requirements
	Use Cases
	Non-functional requirements

	Summary

	Solution design
	Overview
	Pre-processing of digital audio
	Decoding
	Reducing the data rate

	Extraction of musical features from digital audio
	The Fast Fourier Transform
	The Constant Q Transform
	A simpler approach to the CQT
	Framing
	The chromagram
	Tuning

	Segmenting music over time
	Key classification
	Tone profiles
	A final key estimate

	Summary

	Software implementation
	Implementation principles
	An object-oriented approach
	Design patterns

	Choice of language and libraries
	User interface
	Class overview
	Testing
	Summary

	Experiments
	Data sets
	Measuring success
	Parameter testing
	Frequency analysis range
	FFT resolution
	Spectral kernel bandwidth
	Tuning algorithms
	Segmentation
	Tone profiles and similarity measure

	Comparison to other software
	Summary

	Conclusions and future work
	Contributions
	Limitations
	Future work

	Primary data set
	Beatles data set
	Experiment parameter listings

